Formulario Limiti di funzioni - Intervalli


1. Intervalli limitati e illimitati di R.
 

a) Intervalli limitati.

Siano a e b, , due numeri reali.

Si dice intervallo aperto (fig 1) il seguente insieme:

 

e geometricamente si rappresenta  con il segmento di estremi  a  e  b esclusi.
 


Si dice intervallo chiuso (fig 2) il seguente insieme:

e geometricamente si rappresenta  con il segmento di estremi  a  e  b inclusi.:


 

Si dice intervallo inferiormente semiaperto (fig. 3)  il seguente insieme:

 

e geometricamente si rappresenta con il segmento di estremi  a  e  b, b incluso a escluso.

 

Si dice intervallo superiormente semiaperto (fig. 4)  il seguente insieme:

e geometricamente si rappresenta con il segmento di estremi  a  e  b, b escluso a incluso.

 

b) Intervalli illimitati

Si dice intervallo aperto illimitato (fig. 5) di estremo superiore a R il seguente insieme:

e geometricamente si rappresenta con una semiretta di estremo finale il punto a, escluso.
 

Si dice intervallo chiuso illimitato (fig. 6) di estremo superiore a R il seguente insieme:

e geometricamente si rappresenta con una semiretta di estremo finale il punto a, incluso.
 

.

Si dice intervallo  aperto illimitato di estremo inferiore a R   (fig. 7) il seguente insieme:

e geometricamente si rappresenta con una semiretta di estremo iniziale il punto a, escluso.

 

Si dice intervallo chiuso illimitato di estremo inferiore a R   (fig. 8) il seguente insieme:

e geometricamente si rappresenta con una semiretta di estremo iniziale il punto a, incluso.


 

<

>

Indice
Limiti di una funzione

Torna all'indice